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ALdraeL A ml-space renormalition-group approach for calculating the a a d  electmnic 
Green tunclion of an in6nite ?hueMorse chain is presented. This approach is based 
on a renormalization transformalion introduced according U) the self-si-similar structure 
of the chain and the recursion elations for the matrix elemenls of lhe Green function. 
Numerical results for the local density of states for the off-diagonal model show the 
existence of ihe extended states. 

1. Introduction 

Since the remarkable discovery of quasicrystah, there has been considerable interest 
in the theoretical study of onedimensional (1D) quasipenodic systems. As a ID 
analogue of the Penrose lattice, the 1D Fibonacci lattice has been investigated in 
great detail. It is clear now that the electronic energy spectra of Fibonacci lattices for 
diagonal and off-diagonal models in the tight-binding Hamiltonian framework have a 
Cantor-set structure [1-6]. 

In recent years, other ID quasiperiodic and aperiodic systems [7-20], and in par- 
ticular the generalized Fibonacci lattices [9-131 and the ThueMom lattice [14-201, 
have attracted much attention due to their rich physical properties and the possibility 
of experimental realization of the related superlattices [Zl-U]. The dynamical-trace- 
map scheme proposed by Kohmoto et a1 [l, 31, and independently by Ostlund et al [Z], 
for the Fibonacci lattice was successfully extended to study the electronic properties 
of the generalized Fibonacci lattices for diagonal and offdiagonal models [9-12]. As 
for the electronic properties of the Thue-Morse lattice, works were mainly devoted 
to the diagonal model [14-191. Axel and co-workers first derived the mace map (141. 
Riklund et al [U] numerically calculated the energy spectrum and the wavefunctions; 
they found that the spectrum consists of six main clusters and that the wavefunctions 
at the lowest and the highest energics are extended. The energy spectra for both 
weak and strong potentials were discussed by Cheng d a2 1161. Kolir a a1 [17] stud- 
ied the dynamical behaviour of the trace map. The gap sizes of the spectrum were 
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determined analytically by Belksard [18] and KoUi et al [lq. Fbr thc offdiagonal 
model, Qin et d [20] analysed the structure of the energy spectrum based on the 
renormalization-group (RG) scheme developed by Niu and Nori 15) Their analysis 
showed the complexity of the self-similarity in the spectrum and it is for this reason 
that the calculations for the energy spectrum to greater than second order become 
very difficult. 

Recently, Ashraff and Stinchcombe [U, 241 proposed a real-space renormalization- 
group (RSRG) approach to calculate the Green function of a ID Fibonacci lattice. 
Since their work, there has lately been an increasing interest in calculating the exact 
Green functions of ID Fibonacci and generalized Fibonacci lattices [25-30]. So far, 
however, less attention has been paid to the determination of the Green function of 
the ID Thue-Morse lattice. In addition, due to the difference in the construction rules 
for those lattices, it seems difficult to apply the RSRG scheme for the Fibonacci and 
generalized Fibonacci lattices, which are characterized by the splitting of the original 
chain into fmite new chains, to the Thue-Morse case. 'Ib calculate the Green function 
of the Thue-Morse chain, in this paper we give a new RSRG approach which is based 
on the recursion relations for the matrix elements of the Green Function obtained by 
Wu and co-workers 131, 321 for a ID disordered system. 

J X Bong d al 

2. RSRG scheme 

We use the following LD tight-binding Hamiltonian 

i j  

where ci is the site energy of site i and yj is the nearest-neighbour hopping integral. 
The Green function G( Z )  is defined by 

G(Z)  = 1/(Z - H) (2) 

where 2 = E + io+ and E is the energy. The matrix elements of the Green function 
Gij = ( i lG(Z) l j )  satisfy the following equation 

From (3). WU and co-workers [31, 321 obtained the recursion relations for Gij  as 
follows 

In our model for the Thue-Morse chain, the nearest-neighbour hopping integrals 
y j  take two kinds of values V, and V, arranged in the Thue-Morse sequence. 
The "hue-Morse sequence S, is given by the recursion relation {S,+,} = {S,,g,} 
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for I >, 1 with SI = {AB}, in which 3, is the complement of S, obtained by 
interchanging A and B in S,, or by the inflation rule (A, B)-+(AB, BA) starting with 
AB. The site energy ei takes one of the following four values according to the local 
environment of site i 

Obviously, this model is a general one.. The diagonal and the off-diagonal models 
correspond to (V, = VB, E- = ry # E @  = ea) and (VA # V,, E -  = E @  = cy = E ~ ) ,  
respectively. 

Ib obtain the exact Green function of an infinite Thue-Morse chain, we first 
introduce a basic renormalization transformation 'I: This basic transformation is a 
decimation for sites with site energies cB and cy in the Thue-Morse chain and 
can be represented by (AB, BA)-+(A', B'). After applying it to a Thue-Morse 
chain, we can obtain a new Thue-Morse chain with six renormalized parameters 
{ r& , e> ,  e?!, E:, VL, Vi} which are given by the foUowing RG equation 

€!! = E, + - vi +- v2 8 + @ + x + -  vB' (8) Z - E p  Z - E y  Z-ET 2 - 4  

Comparing the original Thue-Morse chain with the new one, which is obtained by 
two iterations of Uansformation T, we lind that there is a special site in the original 
ThueMorse chain which remains undecimated by T and its environment in the new 
chain, ie. the arrangement of the renormalized hopping integrals and site energies 
around it is the Same as that in the old one. This special site, which has the same 
properties as the key site of the Fibonacci chain [ZS-ZS], is called here the key site 
of the Thue-Morse chain. There are WO types of key sites for the Thue-Morse 
chains of different generations, which are termed type So and S6 according to their 
corresponding site energies and e6 respectively. Each chain has only one key site 
and Thue-Morse chains of successive generations have key sites of different types. 
We illustrate the basic transformation T in figure 1. From figures l(a) and (b), one 
can clearly see the properties of the key site of the Thue-Morse chain. 

According to the properties of the key site of the Thue-Morse chain, we can 
obtain the exact local Green function (LGF), Goo, at the key site by infinite iterations 
of transformation 'I: From (3), it follows that 

( 2 -  ~ 0 ) G o o  = 1 t Vo-iG-io t V,iGio. (9) 
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Figure 1. A schematic representation ot the basic transformation T for the Thue-Morse 
chain. A Thue-MOM chain with key sile (site 0) of (a) we So, (b) lype S,. 

After 2n iterations of the transformation we obtain a new Thue-Morse chain with 
renormalized parameters {e&*") e ( Z n ) , e p ) , ~ p ) ,  V p ) ,  V,'""'). For this new chain, 
there is an equation for Goo similar to (9). Since there is the relation ' .@ 

lim v p )  = lim v?) = o 
11-00 n-m 

the LGF, Goo, of the key site is then given by 

Goo = l / ( Z  - e:) 
where e; = limn-- e r )  if the key site is type So and E; = limn-00 p n )  if it is 

Now we turn to the calculation of the initial values A: and A:, io the recursion 
relation (5) for A?. We apply transformation T only to the right part of the " h u e  
Morse chain to the key site, i.e. only decimate the sites to the right of site 0 in 
figure 1. Obviously, the RG equation for the renormalized parameters of the right 
half of the chain is the same as that in ( S ) ,  while the parameters of the left half of 
the chain remain unchanged. As for the key site, the RG equation for its site energy 
is 

type S6. 

Therefore, after 2n iterations of the RG equations (8) and (12), and using (9) and 
(lo), one can obtain 

where = limn-- ,(an), OR 

It is easy to see from the definition of the Green function that Gij = Gji, since 
If.. = H j i .  From (6), we have 

t J  

Go1 = GoovolA: Go-1 = G o o k i A I i .  (14) 

So substitution of G-lo and G,, into (14) finally give A t  and A I l .  Using recursion 
relation (9, one can easily obtain A: for arbitrary i and then calculate all of the 
matrix elements of the Green function from (4) and (6). 
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E 

Figure Z ?he nos  (arbilmy units) a1 weral sites of (he ?hue-Morse chain with Ihe 
key site Ss, in which e ,  = -ea = fr = -e& = I and \% = V, = 1: (a) site 0; (b) 
site 1; (c) site 3; (d )  sile A 

3. Numerical results and discussions 

The Green function can reveal a lot of physical properties of the system. For instance, 
the local density of states (LDos) at site i is given by 

p , ( E )  = - ( l / r ) ImG, , (E+ iot) (15) 

where Im denotes the imaginary part of a complex quantity. In this section, we give 
some numerical results for the LDOS of the ThueMorse chain calculated by the RSRG 
scheme presented in section 2 In ow calculation, site 0 of the Thue-Morse chain 
is the key site S, (see site 0 in figure l(b)). Figures 2(a)-(d) are devoted to several 
sites of the ThueMorse chain for the diagonal model, in which the site energies and 
hopping integrals are chosen to be cor = -eB = c, = -e6 = 1 and V, = V, = 1. 
Each mos in figure 2 has six main clusters. The five main gap sizes of the LDOS 
in figure 2 show a good agreement With the numerical results of RiMund er nl [U] 
and the analytical calculation by Belliissard 1181 and KoUP ef a1 [17]. It iF interesting 
that the L D ~ S  does not contain any smooth part, although the numerical results for 
the wavefunctions at some energies suggested the existence of extended states in the 
"hueMorse chain for the diagonal model 1151. This observation, which is checked 
by a lot of calculations for various values of the site energies, is different from that in 
the mos of a family of generalized Fibonacci lattices, for which the extended state 
corresponds to a rather smooth part of the mos [7, 28, 291. Such a correspondence 
occurs in figure 3 for the off-diagonal model; the mos exhibits a smooth behaviour 
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around energies O,f0.89 and -11.80. It is known that the LGF is purely imaginary 
at the energy of the extended state [33]. Careful examination of the LGF for the 
Thue-Morse chain shows that the values of the real parts at the above-mentioned 
energies are zero, implying that the energies mrresponding to the smoothness of the 
mos in figure 3 are tbose of the extended states appearing in the ThusMorse chain 
for the offdiagonal model. 

J X Bong  et a1 
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I The G a s  (arbitrary unils) at he key Site 
0 Sa of the Thue-Morse chain. in wbich en = = 
-1 

E 

FiiaUy, we would like to point out that the RSRG scheme presented in this paper 
is also suitable for the determination of the Green functions of the Fibonacci lattice 
and a family of the generalized Fibonacci lattices, because of the existence of the key 
sites for those lattices. In fact, we have calculated the mos of the Fibonacci chain 
by the method given here and compared it \kith those &en in [XI. Results obtained 
by different RSRG approaches match each other very well. 
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